--create-bam parameter when executing the cellranger count and cellranger multi pipelines. This new parameter replaces the previously used --no-bam option. All other arguments remain compatible with newer versions, unless otherwise specified.To follow along, you must:
- Have basic UNIX command line experience
 - Fulfill these system requirements
 - Download and install the Cell Ranger software
 - Choose a compute platform
 - Have access to a UNIX command prompt
 
We will work with the Human B cells dataset from a Healthy Donor (1k cells).
Watch this short video tutorial or follow text instructions to download example FASTQs.
Open up a terminal window. You may log in to a remote server or choose to perform the compute on your local machine. Refer to the System Requirements page for details.
In the working directory, create a new folder called dataset-multi-practice/ and cd into that folder:
mkdir dataset-multi-practice
cd dataset-multi-practice
Download the input FASTQ files:
curl -LO https://cf.10xgenomics.com/samples/cell-vdj/6.0.0/sc5p_v2_hs_B_1k_multi_5gex_b_Multiplex/sc5p_v2_hs_B_1k_multi_5gex_b_Multiplex_fastqs.tar
A file named sc5p_v2_hs_B_1k_multi_5gex_b_Multiplex_fastqs.tar should appear in your directory when you list files with the ls command.
Decompress the FASTQs:
tar -xf sc5p_v2_hs_B_1k_multi_5gex_b_Multiplex_fastqs.tar
You should now see a folder called sc5p_v2_hs_B_1k_multi_5gex_b_fastqs that contains two subfolders, sc5p_v2_hs_B_1k_5gex_fastqs and sc5p_v2_hs_B_1k_b_fastqs.
Navigate back to the working directory:
cd ..
Double check you are in the correct directory by running the ls command; the working directory should have the dataset-multi-practice folder.
Watch a short video tutorial or follow the text instructions below.
Download the pre-built human reference transcriptome to the working directory and decompress it. As of this tutorial's publication, the most current was the Human reference (GRCh38) - 2020-A.
curl -O https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz
tar -xf refdata-gex-GRCh38-2020-A.tar.g
Next, download the pre-built V(D)J reference to the working directory and decompress it. As of this tutorial's publication, the most current V(D)J reference is the 5.0 V(D)J human reference.
curl -O https://cf.10xgenomics.com/supp/cell-vdj/refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0.tar.gz
tar -xf refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0.tar.gz
Watch a short video tutorial or follow the text instructions below.
In your working directory, create a new CSV file called multi_config.csv using your text editor of choice:
nano multi_config.csv
Copy and paste this text into the newly created file, and customize file paths:
[gene-expression]
reference,/jane.doe/working-directory/refdata-gex-GRCh38-2020-A
expect-cells,1000
create-bam,true
[vdj]
reference,/jane.doe/working-directory/refdata-cellranger-vdj-GRCh38-alts-ensembl-5.0.0
[libraries]
fastq_id,fastqs,lanes,feature_types,subsample_rate
sc5p_v2_hs_B_1k_5gex,/jane.doe/working-directory/dataset-multi-practice/sc5p_v2_hs_B_1k_multi_5gex_b_fastqs/sc5p_v2_hs_B_1k_5gex_fastqs,1|2,gene expression,
sc5p_v2_hs_B_1k_b,/jane.doe/working-directory/dataset-multi-practice/sc5p_v2_hs_B_1k_multi_5gex_b_fastqs/sc5p_v2_hs_B_1k_b_fastqs,1|2,vdj,
Use your text editor's save command to save the file. In nano, save by typing CTRL+X → y → ENTER.
A customizable multi config CSV template is available for download on the example dataset page, under the Input Files tab.
Once you have all the necessary files, make a new directory called runs/ in your home directory:
mkdir runs/
cd runs/
You will run cellranger multi in the runs/ directory.
After downloading the FASTQ files, the reference transcriptome, and a V(D)J reference, you are ready to run cellranger multi.
Print the usage statement to get a list of all the options:
cellranger multi --help
The output should look similar to:
    user_prompt$ cellranger multi --help
    cellranger-multi
    Analyze multiplexed data or combined gene expression/immune profiling/feature
    barcode data
    USAGE:
        cellranger multi [FLAGS] [OPTIONS] --id  --csv
    FLAGS:
            --dry            Do not execute the pipeline. Generate a pipeline
                            invocation (.mro) file and stop
            --disable-ui     Do not serve the web UI
            --noexit         Keep web UI running after pipestance completes or fails
            --nopreflight    Skip preflight checks
        -h, --help           Prints help information
    OPTIONS:
            --id                A unique run id and output folder name [a-zA-Z0-
                                    9_-]+
            --description     Sample description to embed in output files
                                    [default: ]
            --csv              Path of CSV file enumerating input libraries and
                                    analysis parameters
            --jobmode         Job manager to use. Valid options: local
                                    (default), sge, lsf, slurm or path to a
                                    .template file. Search for help on "Cluster
                                    Mode" at support.10xgenomics.com for more
                                    details on configuring the pipeline to use a
                                    compute cluster [default: local]
            --localcores       Set max cores the pipeline may request at one
                                    time. Only applies to local jobs
            ....
Options used in this tutorial
| Option | Description | 
|---|---|
--id | The id argument must be a unique run ID. We will call this run HumanB_Cell_multi based on the sample type in the example dataset. | 
--csv | Path to the multi config CSV file enumerating input libraries and analysis parameters. Your multi_config.csv file is in the working directory. When executing cellranger multi from the runs directory, the relative path should be: ../multi_config.csv | 
Watch a short video tutorial or follow the text instructions below.
From within the working-directory/runs/ directory, run cellranger multi
cellranger multi --id=HumanB_Cell_multi --csv=../multi_config.csv
The run begins similar to this:
user_prompt$ cellranger multi --id=HumanB_Cell_multi --csv=/jane.doe/working-directory/multi_config.csv
Martian Runtime - v4.0.6
Serving UI at http://bespin1.fuzzplex.com:43129?auth=tIgY0u8ax70yeWhWKF61SkSgJDKvOIgZ-yjxYNJXXtY
Running preflight checks (please wait)...
2022-01-06 16:36:56 [runtime] (ready)           ID.HumanB_Cell_multi.SC_MULTI_CS.PARSE_MULTI_CONFIG
2022-01-06 16:36:56 [runtime] (run:hydra)       ID.HumanB_Cell_multi.SC_MULTI_CS.PARSE_MULTI_CONFIG.fork0.chnk0.main
2022-01-06 16:37:26 [runtime] (chunks_complete) ID.HumanB_Cell_multi.SC_MULTI_CS.PARSE_MULTI_CONFIG
2022-01-06 16:37:26 [runtime] (ready)           ID.HumanB_Cell_multi.SC_MULTI_CS.SC_MULTI_CORE.MULTI_CHEMISTRY_DETECTOR._GEM_WELL_CHEMISTRY_DETECTOR.DETECT_COUNT_CHEMISTRY
2022-01-06 16:37:26 [runtime] (run:hydra)       ID.HumanB_Cell_multi.SC_MULTI_CS.SC_MULTI_CORE.MULTI_CHEMISTRY_DETECTOR._GEM_WELL_CHEMISTRY_DETECTOR.DETECT_COUNT_CHEMISTRY.fork0.chnk0.main
....
When the output of the cellranger multi command says, “Pipestance completed successfully!”, the job is done:
      web_summary:     /jane.doe/working-directory/runs/HumanB_Cell_multi/outs/per_sample_outs/HumanB_Cell_multi/web_summary.html
    metrics_summary: /jane.doe/working-directory/runs/HumanB_Cell_multi/outs/per_sample_outs/HumanB_Cell_multi/metrics_summary.csv
}
Waiting 6 seconds for UI to do final refresh.
Pipestance completed successfully!
Watch a short video tutorial or follow the text instructions below.
Video tutorial Text instructions
A successful cellranger multi run produces a new directory called HumanB_Cell_multi/ (based on the --id flag specified during the run). The contents of the HumanB_Cell_multi/ directory:
── runs
    └── HumanB_Cell_multi
        ├── _cmdline
        ├── _filelist
        ├── _finalstate
        ├── HumanB_Cell_multi.mri.tgz
        ├── _invocation
        ├── _jobmode
        ├── _log
        ├── _mrosource
        ├── outs/
        ├── _perf
        ├── SC_MULTI_CS/
        ├── _sitecheck
        ├── _tags
        ├── _timestamp
        ├── _uuid
        ├── _vdrkill
        └── _versions
The outs/ directory contains all important output files generated by the cellranger multi pipeline:
── runs
    └── HumanB_Cell_multi
        └──outs
            ├── config.csv
            ├── multi
            │   ├── count
            │   │   ├── raw_cloupe.cloupe
            │   │   ├── raw_feature_bc_matrix
            │   │   ├── raw_feature_bc_matrix.h5
            │   │   ├── raw_molecule_info.h5
            │   │   ├── unassigned_alignments.bam
            │   │   └── unassigned_alignments.bam.bai
            │   └── vdj_b
            │       ├── all_contig_annotations.bed
            │       ├── all_contig_annotations.csv
            │       ├── all_contig_annotations.json
            │       ├── all_contig.bam
            │       ├── all_contig.bam.bai
            │       ├── all_contig.fasta
            │       ├── all_contig.fasta.fai
            │       └── all_contig.fastq
            ├── per_sample_outs
            │   └── HumanB_Cell_multi
            │       ├── count
            │       ├── metrics_summary.csv
            │       ├── vdj_b
            │       └── web_summary.html
            └── vdj_reference
                ├── fasta
                │   ├── donor_regions.fa
                │   └── regions.fa
                └── reference.json